Unit Testing Activity

Other
/,7 Dependency
Dependency Other
_ 7 1 —— Dependency
7
-~
-
Component /”’/ E
Testing L - S o - Dependency | - Other
Class Test ! Q 2 Dependency
~ )
T Dependency Other
N 3 = Dependency

SWEN-261
Introduction to Software

Engineering [@\

Department of Software Engineering .
Rochester Institute of Technology Rochester Institute

of Technology



Your activity for the Unit Testing lesson is to build tests for existing
Project components.

" These slides direct you through the process of creating unit tests for your
project.
v'Activity actions are highlighted in green with a checkmark.

= But first, these slides provide technical details on:
1. How to organize test classes using Maven
How to run tests using Maven
How to structure a typical test class
How to use JUnit assertion functions
How to use package-private constants in test code
How to use Mockito mock objects using Dependency Injection

oA WN



Maven provides a convenient structure for organizing unit test
code.

" Put your test classes in a separate source path.
e The goal is to keep the test source code separate from the production source code.
e Using Maven that is usually src/test/java.
v'Create this directory if it doesn't already exist.
v'(Optional) Link your IDE to this source path.

= Most IDEs provide wizards for creating unit tests.
e Make sure the IDE stores the test classes in the proper source path.

" The unit test code examples in these slides are from the Heroes API starter
code



Maven will run tests during builds and there is also the test
target.

PS C:\Users\student\heroes-api-starter> mvn clean test

[INFO]

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

Scanning for projects...
<SKIPPING SOME Maven OUTPUT>

TESTS

Running com.heroes.api.heroesapi.controller.HeroControllerTest
Tests run: 2, Failures: @, Errors: O, Skipped: O, Time elapsed: 0.947 s - in

com.heroes.api.heroesapi.controller.HeroControllerTest

[INFO]
[INFO]
[INFO]

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

Running com.heroes.api.heroesapi.persistence.HeroFileDAOTest
Tests run: 10, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.656 s - in com.heroes.api.heroesapi.persistence.HeroFileDAOTest
Running com.heroes.api.heroesapi.HeroesApiApplicationTests

<SKIPPING SOME Maven OUTPUT>
Tests run: 1, Failures: @, Errors: 0, Skipped: 0, Time elapsed: 3.185 s - in com.heroes.api.heroesapi.HeroesApiApplicationTests
Running com.heroes.api.heroesapi.model.HeroTest
Tests run: 5, Failures: @, Errors: O, Skipped: O, Time elapsed: 0.003 s - in com.heroes.api.heroesapi.model.HeroTest

Results:

Tests run: 18, Failures: @, Errors: 0, Skipped: ©

--- jacoco-maven-plugin:0.8.7:report (report) @ heroes-api ---
Loading execution data file C:\Users\student\heroes-api-starter\target\jacoco.exec
Analyzed bundle 'heroes-api' with 5 classes

Total time: 10.815 s
Finished at: 2021-11-25T09:57:12-05:00



Test files are kept in separate directories from the application
code but in the same package.

" Name the test class after the component under test (CuT) in the same
package.

e So if CuT is com. heroes.api.heroesapi.model .Hero
e Then test class is: com. heroes.api.heroesapi.model .HeroTest
e Doing so gives the test code package-private access to CuT class.



JUnit understands several annotations that you must use in your
test files.

» Annotate each class with @Tag to indicate which architectural tier the class
IS INn.
e Use these tags: Persistence-tier, Model-tier, Controller-tier
e You will learn more about the role of these tags in the Code Coverage lesson.

" Annotate each test method with @Test.

" Use @BeforeFach or @BeforeAll annotated methods for setup before
each test or setup done once before all tests

" Method annotations €AfterEach and @AfterAll serve similar clean up
tasks after running tests.



Recall the checklist of types of unit tests.

" Business logic
e Tests for each path through a method
e Happy path as well as failure paths

= Constructors and accessors

= Defensive programming checks

e Validation of method arguments
¢ NullPointerException
¢ TllegalArgumentException

e Validation of component state
¢ TllegalStateException

= Special methods, e.g. equals, hashcode, toString, as needed

" Exception handling



Here's an example unit test suite for the Hero class.

package com.heroes.api.heroesapi.model;

import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.Tag;
import org.junit.jupiter.api.Test;

@Tag("Model-tier") Indicate Model tier
public class HeroTest {

@Test

public void testCtor() {..} Test constructors

@Test

public void testName() {..} Test accessors and mutators
@Test

public void testToString() {..} Special methods

Import JUnit assertion
functions and Tags



Here’s an example test methods for the Hero class.

@Test

public void testToString() {
// Setup
int id = 99;
String name = "Wi-Fire";

String expected _string = String.format(Hero.STRING FORMAT,id,name);
Hero hero = new Hero(id,name);

// Invoke
String actual_string = hero.toString();

// Analyze
assertEquals(expected_string,actual_string);



10

Here's an example of how to test an expected exception.

= Example from HeroFileDAOTest.java
e Use the assertThrows assertion:

@Test
public void testConstructorException() throws IOException {
// Setup
ObjectMapper mockObjectMapper = mock(ObjectMapper.class);
doThrow(new IOException()).when(mockObjectMapper).readValue(new File("doesnt matter.txt"),Hero[].class);

// Invoke & Analyze
assertThrows (IOException.class, () -> new HeroFileDAO("doesnt matter.txt",mockObjectMapper),"IOException not thrown");

}
e Roughly the same as:
@Test
public void testConstructorException() throws IOException {
// Setup
ObjectMapper mockObjectMapper = mock(ObjectMapper.class);
doThrow(new IOException()).when(mockObjectMapper).readvValue(new File("doesnt_matter.txt"),Hero[].class);
// Invoke
try {
new HeroFileDAO("doesnt_matter.txt",mockObjectMapper);
// Analyze
fail("IOException not thrown");
}
catch (IOException ioe) {}
}



JUnit has many built-in assertions you can use.

= Test truth-hood

e assertTrue(condition[, message])
e assertFalse(condition[, message])

= Test values or objects for equality

e assertEquals(expected, actual[, message])
o assertNotEquals(expected, actual[, message])

» Test objects for identity (objl == obj2)
e assertSame(expected, actual[, message])
e assertNotSame(expected, actual[, message])

= Test null-hood

e assertNull(object[, message])
o assertNotNull(object[, message])

= Test exceptions

e assertThrows(exception class, executable [, message])
o assertDoesNotThrow(executable [, message]])

= Automatic failure
11 e fail(message)



14

When components have dependencies you have to consider how
to isolate the dependencies.

* Dependencies are isolated along the testing seam for a component.

" There are three elements to consider
e Component under Test (CuT)
e Friendly dependencies that can be trusted to work

e Other dependencies that must have mocks because they are not trusted or we need
special control during the test

Other
Dependency

FrienoHy/"fr

Dependency Other
1 ——— Dependency

o -
Component E
Testing - Tartas Dependency — Other
Class Test i ((}J) 2 Dependency

2\ Dependency Other
3 Dependency




15

Here's an example unit test suite for the HeroFileDAO class.

" Import the necessary Junit, Mockito, and Friendly dependencies

package com.heroes.api.heroesapi.persistence;

import
import

import
import
import
import
import
import
import
import

import
import
import
import

import

import

java.io.File;
java.io.IOException;

static
static
static
static
static

org.junit
org.junit
org.junit
org.junit
org.junit

.Jjupiter.
.Jjupiter.
.jupiter.
.jupiter.
.jupiter.

api
api
api
api
api

.Assertions.
.Assertions.
.Assertions.
.Assertions.
.Assertions.

org.junit.jupiter.api.BeforeEach;

org.junit.jupiter.api.Tag;

org.junit.jupiter.api.Test;

static
static
static
static

com.fasterxml.jackson.databind.ObjectMapper;

org.mockito.ArgumentMatchers.any;

org.mockito.Mockito.doThrow;

org.mockito.Mockito.mock;

org.mockito.Mockito.when;

com.heroes.api.heroesapi.model.Hero;

assertDoesNotThrow;
assertEquals;
assertNotNull;

assertNull; _ _ i
assertThrows; Import JUnit assertion functions and tags

Import Mockito functions and classes

Used to create a mock object

Friendly



Here's an example unit test suite for the HeroFileDAO class.
= Setup and Happy Path Tests

@Tag("Persistence-tier") Indicate controller tier
public class HeroFileDAOTest {

HeroFileDAO heroFileDAO;

Hero[] testHeroes;

ObjectMapper mockObjectMapper;

@BeforeEach

public void setupHeroFileDAO() throws IOException {..} Set';p function to be called before
each test

@Test
public void testGetHeroes() {..}

@Test
public void testFindHeroes() {..}

@Test
public void testGetHero() {..}

@Test Test business logic / CRUD operations.
public void testDeleteHero() {..}

@Test
public void testCreateHero() {..}

@Test
public void testUpdateHero() {..}



Here's an example unit test suite for the HeroFileDAO class.

" Error Handling Tests

@Test
public void testSaveException() {..}

@Test
public void testGetHeroNotFound() {..}

@Test

public void testDeleteHeroNotFound() {..} Test defensive programming checks.

@Test
public void testUpdateHeroNotFound() {..}

@Test
public void testConstructorException() throws IOException {..}



18

A quick review of dependency injection which is a key design
technique to make classes testable.

@Component This class is instantiated by the Spring Boot framework

public class HeroFileDAO implements HeroDAO { by virtue of the @Component annotation.
Map<Integer,Hero> heroes;
private ObjectMapper objectMapper;
private static int nextId;
private String filename;

public HeroFileDAO(@Value("${heroes.file}") String filename,ObjectMapper objectMapper) throws IOException {..}

The dependent ObjectMapper object is injected into the HeroFileDAO constructor

=" We could create an ObjectMapper object in the HeroFileDAO constructor,
but...
e Recall that the ObjectMapper is responsible for deserialization and serialization of
JSON objects to/from Java Objects and to write and read from a file

e Testing with an actual file would be difficult — the consistent state of the file would
need to be ensured and the file may need to be read to validate
e By injecting the ObjectMapper, we can use a mock object in our tests




19

We have to setup the mocks before each test.

@BeforeEach
public void setupHeroFileDAO() throws IOException {
mockObjectMapper = mock(ObjectMapper.class);

Use the Mockito mock function to
create a mock object

testHeroes = new Hero[3];

testHeroes[@] = new Hero(99,“Wi-Fire");
testHeroes[1] new Hero(100,“Galactic Agent");
testHeroes[2] new Hero(101,“Ice Gladiator");

Create an array of Hero objects
that can be returned

when(mockObjectMapper
.readValue(new File("doesnt_matter.txt"),Hero[].class))
.thenReturn(testHeroes);

Use the Mockito when and
thenReturn APIs to simulate a
reading Hero objects from a file
heroFileDAO = new HeroFileDAO("doesnt matter.txt",mockObjectMapper);

Inject the mock ObjectMapper into
the HeroFileDAO constructor

See HeroControllerTest for more examples of Mock Objects and Dependency Injection



20

Mockito has a rich API for setting scenarios and for inspecting test
activity.

= Arranging scenarios:
e when(mock.method(args)).thenReturn(value)
e when(mock.method(args)).thenThrow(new Exception())
e when(mock.method(args)).thenAnswer(lambda)

" [nspecting activity within the CuT method:
e verify(mock).method(args)
e verify(mock, times(1)).method(args)

e Other verification modes:
¢ times(n), atlLeast(n), atMost(n) & never()

= Specifying arguments:
e An actual value or object: eq(value) or eq(object)
e Any value (anyint(), etc); any() for any Object
e Many more types of Matchers



https://static.javadoc.io/org.mockito/mockito-core/2.7.13/org/mockito/ArgumentMatchers.html

21

Your exercise is to build unit tests for two classes in your Project.

v Each team member picks two classes in your project and builds unit tests
for them.

e Each team member will pick different classes to test.
e /[f you need to refactor the code to make the component more testable, then do so.

v'Create the test class in the appropriate package in the test source path.

v'Create a reasonable set of test cases.
» At least three test cases for each CuT.
* Focus on the business logic methods (eg, REST Controllers or Services).



22

Your exercise is to build unit tests for two classes in your Project.

v'Upload the two unit test source files to the Unit testing - individual Dropbox
in MyCourses.

v'You will now complete the Definition of Done unit testing checklist items to
consider the story done.

B Definition of Done Checklist Delete. ..

acceptance criteria are defined

solution tasks are specified

featyre branch created

design documentation updated

pull request created

user story passes all acceptance criteria
code review performed

feature branch merged into master

feature branch deleted



